# First XGBoost model for Pima Indians dataset
from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# load data
dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")
# split data into X and y
X = dataset[:,0:8]
Y = dataset[:,8]
# split data into train and test sets
seed = 7
test_size = 0.33
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)
# fit model no training data
model = XGBClassifier()
model.fit(X_train, y_train)
# make predictions for test data
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
# evaluate predictions
accuracy = accuracy_score(y_test, predictions)
print("Accuracy: %.2f%%" % (accuracy * 100.0))
'python3' 카테고리의 다른 글
[pandas] MinMaxScaling sample code (0) | 2021.11.30 |
---|---|
[pandas] dataframe filter (0) | 2021.11.15 |
[json] pandas dataframe to json file / json file read, write, append (0) | 2020.11.19 |
[pandas] dataframe get row value / 데이터 전처리 (0) | 2020.06.01 |
[반복문] skip 시 pass/continue (0) | 2020.05.13 |